PCA-Based Speech Enhancement for Distorted Speech Recognition
نویسندگان
چکیده
We investigated a robust speech feature extraction method using kernel PCA (Principal Component Analysis) for distorted speech recognition. Kernel PCA has been suggested for various image processing tasks requiring an image model, such as denoising, where a noise-free image is constructed from a noisy input image [1]. Much research for robust speech feature extraction has been done, but it remains difficult to completely remove additive or convolution noise (distortion). The most commonly used noise-removal techniques are based on the spectraldomain operation, and then for speech recognition, the MFCC (Mel Frequency Cepstral Coefficient) is computed, where DCT (Discrete Cosine Transform) is applied to the mel-scale filter bank output. This paper describes a new PCA-based speech enhancement algorithm using kernel PCA instead of DCT, where the main speech element is projected onto low-order features, while the noise or distortion element is projected onto high-order features. Its effectiveness is confirmed by word recognition experiments on distorted speech.
منابع مشابه
PCA-Based Speech Enhancement For Distorted Speech Recognition
This paper deals with application of speech recognition using distorted speech signal. When speech signal is given as an input to any system some background noise always gets added to it which is undesirable. In order to overcome this difficulty we transform the signal using Kernel Principal Component Analysis and then the task of recognition is done using the Hidden Markov Models. The develope...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Multimedia
دوره 2 شماره
صفحات -
تاریخ انتشار 2007